Over deze cursus
Abstract: Hamiltonian systems and their integrals of motion. Hamilton-Jacobi equation and separation of variables. Classification of integrable systems with integrals polynomial in momenta. Superintegrability. Perturbative methods in the study of Hamiltonian systems.
Leerresultaten
The students will get a deeper knowledge of the classical Hamiltonian mechanics, better understand the motivation for various standard notions and be able to follow more recent advances in the field, like perturbative methods and superintegrability.
Voorkennis
Essential: classical analytical mechanics (canonical momenta, Hamilton’s equations of motion etc.), cf. course 02TEF1 Theoretical Physics 1. Recommended: basic knowledge of differential geometry (manifolds, vector fields, differential forms), cf. course 02GMF1 Geometric Methods of Physics 1.
Bronnen
- Key references:
- [1] W. Thirring, Classical Mathematical Physics: Dynamical Systems and Field Theories, Springer 2003.
- [2] M. Audin: Hamiltonian Systems and Their Integrability. American Mathematical Society, 2008.
- [3] W. Miller Jr., S. Post and P. Winternitz: Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor. 46 423001, 2013.
- Recommended references:
- [4] E. G. Kalnins, J. M. Kress and W. Miller Jr.: Separation of variables and superintegrability : the symmetry of solvable systems, Institute of Physics Publishing, 2018.
- [5] J. A. Sanders, F. Verhulst, J. Murdock: Averaging Methods in Nonlinear Dynamical Systems, Springer 2007.
Activiteiten
Lectures
Aanvullende informatie
- Coordinerende vakgroepCzech Technical University in Prague
- Neem contact op met een coordinator
- StudiepuntenECTS 2
- Contact uren per week2
- Instructeursdoc. Marchesiello Antonella Ph.D., doc. Ing. Šnobl Libor Ph.D.
- InstructievormHybrid
Aanbod
Startdatum
17 februari 2025
- Einddatum21 september 2025
- Periode *Summer 2024/2025
- VoertaalEngels
- Inschrijven tussen24 okt - 29 nov 2024
Nog 8 dagen om in te schrijvenApply now