Basic power electronics in energy systems

Physics and Energy

About this course

The overall purpose of the course is to provide the student with a basic understanding of power supplies (uninsulated and insulated) in DC and AC converters as well as one-phase and three-phase circuits. In addition, courses include a basic knowledge of the use of switch mode power electronics in simple, regulated systems, eg in motor drives, renewable energy systems and amplifiers

Learning outcomes

At the end of the course the learner will be able to: • describe and calculate the concepts of efficiency, mean value and power factor • classify converter types and pulse-width modulation • explain crucial properties of passive and active components in relation to power converters • determine the time course of voltages and currents for the basic converter topologies (buck, boost and buck-boost) and derivatives thereof • derive the transfer function for both the basic topologies and derivatives thereof • determine basic parameters in power electronics circuits based on simulations • design transformers in galvanically separated topologies (f.x. forward, flyback, push-pull, half-bridge, full-bridge) • determine basic parameters in switch mode circuits based on measurements on these • calculate signals and power losses in switch-mode power circuits • specify power converters and their components using English technical language under realistic working conditions for practicing engineers • clarify the operation of single-phase and three-phase pulse-width modulated inverters and pulse-width modulated rectifiers • explain crucial features of V / Hz control of three-phase AC machines and frequency converters.

Enrolment details

Mandatory exercises might be scheduled outside of schedule. Furthermore, there is a self-organised group work.


Evaluation of exercises/reports. There is no final exam.


Learning is encouraged as co-creation with group and class members. Offered teaching material through videos and quizzes, chat-based communication, artificial intelligens, peer-review, problem solving and lab work, exercises.

Additional information

  • Credits
    ECTS 5
  • Level
  • Contact hours per week
  • Instructors
    Arnold Knott
  • Mode of instruction
If anything remains unclear, please check the FAQ of DTU (Denmark).


  • Start date

    6 February 2025

    • Ends
      12 May 2025
    • Term *
    • Location
    • Instruction language
These offerings are valid for students of CTU (Czech Republic)